ePoster 9

EFFECTS OF GROUP III METABOTROPIC GLUTAMATE RECEPTOR AGONIST ON THE MICTURITION REFLEX IN URETHANE-ANESTHETIZED

Masashi Honda¹, Yusuke Kimura¹, Bunya Kawamoto¹, Tsounapi Panagiota¹, Katsuya Hikita¹, Shogo Shimizu², Takahiro Shimizu², Motoaki Saito³ and Atsushi Takenaka¹

- ¹ Dept. of Urology, Tottori University Faculty of Medicine, Yonago, Japan,
- ² Dept. of Pharmacology, Kochi Medical School, Nankoku, Japan

INTRODUCTION

- The modulatory actions of glutamate, the main excitatory neurotransmitter in the central nervous system, are exerted via activation of metabotropic glutamate receptors (mGluRs) (1).
- Eight distinct mGluRs (mGluR1-8) have been classified into three groups (I-III) based on their sequence homology (2).
- Group III mGluRs (mGluRIII; mGluR4, mGluR6, mGluR7 and mGluR8) are widely distributed throughout the central nervous system (3).
- It is unknown whether mGluRIII plays a role in the regulation of neural mechanisms controlling the micturition reflex.

OBJECTIVES

To investigate supraspinal and spinal effects of L-(+)-2-amino-4-phosphonobutyric acid (L-AP4), a selective mGluRIII agonist, on the micturition reflex in urethaneanesthetized rats.

METHODS

Adult female Spraque-Dawley rats (weighing 238-261 g) were used. Rats were maintained under standard laboratory conditions with a 12-h light/12-h dark cycle and free access to food pellets and tap water.

Druas

L-AP4, a selective mGluRIII agonist, was dissolved in saline

Intrathecal administration of L-AP4

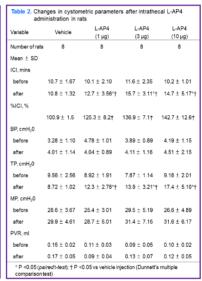
- Rats were anesthetized with isoflurane followed by urethane (1.2 g/kg subcutaneously).
- A midline abdominal incision was made, and a transvesical catheter (PE-60) with a fire-flared tip was inserted into the dome of the bladder and secured with silk thread for bladder filling and pressure recording. A 3-way stopcock was connected to the transvesical catheter to monitor the bladder pressure.
- Saline was continuously infused into the bladder for 2 hours at a rate of 0.04 ml per minute to record cystometrograms during a control period.
- L-AP4 (1, 3 and 10 μg, n=8 per dose) was administered intrathecally to evaluate changes in bladder activity.
- PE-10 intrathecal catheter was directed caudally into the spinal subarachnoid space and positioned at the level of the L6-S1 spinal cord. The volume of fluid in the catheter was kept constant at 6 µl. Single doses of drugs were then administered in a volume of 2 µl, followed by a 6 µl flush with saline.
- Cystometric parameters were recorded and compared before and after drug administration.

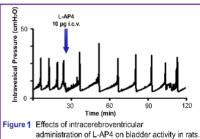
Intracerebroventricular administration of L-AP4

- L-AP4 (1, 3 and 10 μg, n=8 per dose) was administered intracerebroventricularly.
- Using a stereotaxic micro-injector, a 30 gauge needle attached to a 10 µl Hamilton syringe was inserted into the lateral ventricle, and single doses of drugs were administered in a volume of 2 µI during 2 minutes.
- Cystometric parameters were recorded and compared before and after drug administration.

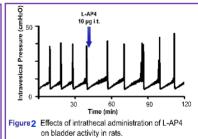
cystometric variables before and after treatment.

Wilcoxon signed rank test was used to compare


RESULTS


- Intracerebroventricular administration of L-AP4 at doses of 1, 3 and 10 µg (n=8 per dose) increased intercontraction intervals (ICI) in dose dependent fashion, but did not affect maximum pressure (MP), basal pressure (BP), post void residual (PVR) at any doses tested.
- Intrathecal administration of L-AP4 at doses of 1, 3 and 10 µg (n=8 per dose) also increased ICI in dose dependent fashion, but did not affect MP, BP, PVR at any doses tested.
- Intracerebroventricular or intrathecal administration of L-AP4 also increased threshold pressure (TP) in dose dependent fashion.

DISCUSSION


- In urethane-anesthetized rats intracerebroventricular or intrathecal administered L-AP4 has an inhibitory effect on the micturition reflex, as shown by the observed increases in ICI and TP.
- We postulate that the site of action may be the supraspinal and spinal sites.

Variable	Vehicle	L-AP4 (1 µg)	L-AP4 (3 µg)	L-AP4 (10 µg)
Number of rats	8	8	8	8
$Mean \pm SD$				
ICI, mins				
before	10.1 ± 2.31	10.7 ± 3.18	10.5 ± 1.19	11.7 ± 3.15
after	10.5 ± 1.18	12.4 ± 4.16'†	13.8 ± 2.17*†	15.9 ± 5.51°†
%ICI, %				
	$\textbf{103.9} \pm \textbf{9.7}$	117.1 ± 12.3†	132.5 ± 10.5†	137.1 ± 15.6
BP, cmH ₂ 0				
before	4.18 ± 3.21	5.18 ± 1.52	4.61 ± 1.02	$3.99 \pm\ 1.27$
after	4.00 ± 1.15	4.15 ± 1.26	5.10 ± 2.16	$3.67 \pm\ 1.38$
TP, cmH ₂ 0				
before	7.67 ± 1.23	$\textbf{6.78} \pm \ \textbf{1.01}$	$7.27 \pm\ 0.09$	$\textbf{8.45} \pm \textbf{2.15}$
after	7.56 ± 1.15	10.5 ± 1.11*†	14.8 ± 2.18*†	16.8 ± 3.61*1
MP, cmH ₂ 0				
before	30.6 ± 4.17	$\textbf{31.8} \pm \textbf{2.67}$	$\textbf{33.5} \pm \textbf{4.16}$	$\textbf{27.8} \pm \textbf{6.78}$
after	28.6 ± 3.61	$28.5 \pm\ 2.56$	36.1 ± 8.56	$\textbf{30.6} \pm \textbf{7.16}$
PVR, ml				
before	0.05 ± 0.01	0.15 ± 0.04	0.14 ± 0.02	$0.09 \pm\ 0.01$
after	0.08 ± 0.02	$\textbf{0.09} \pm \ \textbf{0.06}$	$0.09 \pm\ 0.03$	0.12 ± 0.06

administration of L-AP4 on bladder activity in rats.

CONCLUSIONS

- The results of our study indicate that in urethaneanesthetized rats activation of mGluRIII can inhibit the micturition reflex at supraspinal and spinal sites.
- Thus mGluRIII could be a potential target for the treatment of bladder dysfunction.

REFERENCES

- Nicoletti F, Bockaert J, Collingridge GL et al. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 2011; 60:1017-1041.
- Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010; 50:295-322.
- Messenger MJ, Dawson LG, Duty S. Changes in metabotropic glutamate receptor 1-8 gene expression in the rodent basal ganglia motor loop following lesion of the nigrostriatal tract. Neuropharmacology 2002; 43:261-271.

Disclosures Statement

No disclaimers or financial support to declare and no conflict of interests.

ICS2017 Open-Discussion ePoster Session