



# #730 "Taking a stand": The influence of posture on urodynamic studies in geriatric patients

Van Huele A<sup>1</sup>, Everaert K<sup>1</sup>, Decalf V<sup>1</sup>, Monaghan T<sup>2</sup>, Hervé F<sup>1</sup>, Wein A<sup>3</sup>, Bou Kheir G<sup>1</sup>

<sup>1</sup> Department of Urology, Ghent University Hospital, Ghent, Belgium

- <sup>2</sup> Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- <sup>3</sup> Department of Urology, Desai Sethi Urology Institute, University of Miami Health System, Miami, Florida, USA

# Hypothesis / aims of study

- Diagnosis of urinary incontinence (UI) often involves technical procedures like urodynamic studies (UDS).
- These procedures can be uncomfortable and timeconsuming, especially for elderly individuals.
- Main objective: Identify disparities between outcomes of UDS in sitting vs. standing positions and evaluate their concordance
  - To streamline diagnostic workup for older adults with UI

### Study design, materials and methods

- Study Name: "Think Dry: Optimalisation of Diagnostic Process of Urinary Incontinence in Older People" (NCT04094753)
  - Prospective observational cohort study
  - Aim: To create a short form of technical investigations
    to diagnose UI
  - Inclusion Criteria: Age 65+, all types of urinary incontinence

## **Results and interpretation**

#### **Results**

- Patient Characteristics:
  - Median age: 74 years (IQR 70-78)
  - Females: 90.2%
  - Diagnosis distribution: Stress- (40.2%), Urge- (30.4%), Mixed- (29.4%) UI
- Urodynamic Parameters:
  - Significant difference in post-void residual in general population
  - Subgroup analysis results in Table 1
  - No differences in parameters when using age group cut-off (median, 74 years)
- Concordance Analysis, Figure 1:
  - General study population: Kappa-value of 0.42 (sitting UDS) vs. 0.92 (standing UDS)
  - Consistent outcomes across specific types of UI in subgroup analysis
- Exclusion Criteria: Indwelling urinary catheter, clean intermittent catheterization
- Secondary analysis
- Participants: 102 out of a total of 180 patients underwent both sitting and standing UDS
- UDS Parameters and Procedure
  - Adhered to International Continence Society (ICS) standards (1)
  - Each patient underwent two UDS, one in sitting position and one in standing position.
  - Voiding phase in seated position for both groups
  - Final diagnosis by referring urologist, based on both UDS, clinical exams, medical history, voiding diaries, and questionnaires
  - Experienced urologist reviewed UDS without knowledge of prior diagnosis.
- Concordance analysis using Cohen's Kappa coefficient.
  - Statistical analysis with SPSS version 27

# **Results and interpretation**

#### Table 1: Urodynamic parameters comparison

| Urodynamic<br>parameter, median<br>(IQR) | Sitting vs. standing,<br>general study<br>population (n=102) | Sitting vs. standing,<br>SUI (n=41)                  | Sitting vs. standing,<br>UUI (n=31)                | Sitting vs. standing,<br>MUI (n=30)              |
|------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|
| First sensation of bladder filling, ml   | 185 (119.8-246.8)<br>vs. 202.5 (122.8-<br>280)               | 206 (122.5-288) vs.<br>209.5 (152.5-314.3)           | 134 (104-224) vs.<br>160 (58-280)                  | 190 (135-255.5) vs.<br>210 (121-262)             |
| Normal desire to void, ml                | 238 (188.8-327) vs.<br>238 (157.5 - 306)                     | 240.5 (189.5-371.8)<br>vs. 250 (181-342)             | 207.5 (147.5-280.5)<br>vs. 202 (117.5-<br>280.5)   | 247.5 (205-334.8)<br>vs. 245 (154-208.5)         |
| Strong desire to void, ml                | 340 (281.3-417.8)<br>vs. 312 (270-407)                       | 344 (297.8-427) vs.<br>340 (286.3-405.8)             | 270 (223.5-372.5)<br>vs. 280 (214.5-428)           | 355 (300-428) vs.<br>300 (251.8-405.3)           |
| Maximum flow,<br>ml/s                    | 14.7 (8.2-22.1) vs.<br>15.2 (10.3 -22.8)                     | 17.7 (9.2-24.8) vs.<br>20.3 (13.5-24.6)              | 11.7 (4.9-15.9) vs.<br>11.6 (7.3-21.2)<br>p=0.048  | 14.2 (9.3-21.9- vs.<br>12.1 (8.1-18.7)           |
| Average flow rate, ml/s                  | 3.8 (2.5-6.3) vs. 4.7<br>(2.7-6.5)                           | 4.8 (2-7.6) vs. 5.6 (3.2-7.8)                        | 2.9 (1.9-4.2) vs. 3.6<br>(2.3-5.9)                 | 3.6 (2.7-6.3) vs. 3.6<br>(2.0-6.4)               |
| Flow time, s                             | 6.8 (4.9-11.2) vs. 6.3 (4.6-8.8)                             | 7.4 (5.3-11.7) vs. 6.4 (5.3-8.6)                     | 5.6 (4.4-11.6) vs. 4.8 (3.3-8.2)                   | 7.4 (5.3-11.1) vs. 7.5<br>(4.3-9.9)              |
| Time to maximum urinary flow rate, s     | 2.7 (1.6-7.5) vs. 2.0<br>(1.2-4.3)                           | 3.6 (1.8-9.4) vs. 2.6 (1.7-4.5)                      | 2.0 (1.3-11.2) vs. 1.5<br>(0.8-3.1)                | 2.7 (1.4-4.1) vs. 1.9<br>(1.1-5.5)               |
| Voided volume, ml                        | 279 (147.2-399.7)<br>vs. 260 (183.7 - 371)                   | 326.5 (230.1-431.5)<br>vs. 309.1 (246.9-<br>406.9)   | 191.4 (127.8-282.3)<br>vs. 215.4 (124.1-<br>292.5) | 320.6 (143.3-440.7)<br>vs. 250 (161.3-<br>338.6) |
| Pressure at<br>maximum flow,<br>cmH2O    | 18.5 (8.8-31) vs.<br>16.7 (6.5-30.2)                         | 18.3 (9.4-25.9) vs.<br>14.7 (4.0-34.8)               | 23.3 (17.4-33.3) vs.<br>18.1 (5.3-26.0)            | 11.7 (4.9-33) vs.<br>18.7 (8.7-26.1)             |
| Peak pressure,<br>cmH2O                  | 32.8 (20.5-48.1) vs.<br>28.7 (16.6-47.5)                     | 29.2 (17.4-43.1) vs.<br>27.5 (14.1-46.2)             | 42.3 (26.8-55.7) vs.<br>8.0 (17.6-52.7)            | 29.5 (18.7-47.7) vs.<br>31.4 (22.1-49.6)         |
| Mean pressure,<br>cmH2O                  | 21 (10.1-34.8) vs. 15 (6.8-27.1)                             | 17.1 (10.2-27.4) vs.<br>9.7 (4.3-24.6)               | 28.3 (20.4-45.3) vs.<br>18.9 (8.5-31.9)            | 17.1 (7.4-31.2) vs.<br>18.6 (7.3-26.4)           |
| Post void residual volume, ml            | 50 (0-180) vs. 40 (0-<br>114)<br>p=0.026                     | 31 (0-156) vs. 0 (0-<br>80)                          | 65.5 (0.5-159.8) vs.<br>40 (2.4-117.5)             | 52 (0-230) vs. 80 (0-<br>130)                    |
| Compliance,<br>ml/cmH20                  | 40.5 (23.2-77.2) vs.<br>44.8 (21.6-121)                      | 47.7 (32.1-97.0) vs.<br>94.0 (39.4-240.5)<br>p=0.026 | 26.4 (18.4-71.3) vs.<br>27 (9.3-75.5)              | 37.7 (21.5-97.3) vs.<br>31.0 (18.4-73.0)         |

# Figure 1: Concordance analysis (Kappa Value and SE) comparing position and urodynamic diagnosis



SUI: Stress urinary incontinence, UUI: Urgency urinary incontinence, MUI: Mixed urinary incontinence, SE: Standard error

#### Interpretation

- Statistically significant differences in UDS parameters between positions, but without clinical importance
- Clinically significant difference in concordance analysis:
  - Comparing final diagnosis with those based solely on retrospectively reviewed sitting versus standing UDS
  - Moderate agreement in sitting position
  - High agreement in standing position
  - Consistent results in additional subgroup analyses

#### Conclusions

**Significant: Bold,** IQR: Interquartile range, SUI: Stress urinary incontinence, UUI: Urgency urinary incontinence, MUI: Mixed urinary incontinence, mI: milliliter, s: seconds, cm: centimeter

- UDS in elderly patients while standing provides a very high diagnostic concordance when compared to the final diagnosis.
- This potentially allows the omission of testing in the sitting position, resulting in reduced discomfort and increased efficiency.
- Future randomized testing sequence is recommended to confirm findings.

#### References

1. Rosier P.F.W.M., Schaefer W., Lose G., Goldman H.B., Guralnick M., Eustice S., Dickinson T., Hashim H., International continence society good urodynamic practices and terms 2016: Urodynamics, uroflowmetry, cystometry, and pressure-flow study, Neurourol. Urodyn., 36 (5) (2017), pp. 1243-1260, doi: 10.1002/nau.23124.