# Relationship between urinary Equol level and the prevalence of pelvic organ prolapse

Hiroyuki Honda, Tomohiro Matsuo, Shintaro Mori, Kyohei Araki, Kensuke Mitsunari, Kojiro Ohba, Yasushi Mochizuki, Ryoichi Imamura

Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan



OH

OH

# Background

### <u>Equol</u>

- > It is a substance produced when Isoflavone is metabolized by gut microbiota.
- > Approximately 50% of the Japanese population is capable of producing Equol<sup>1</sup>.
- > It has an estrogen-like structure and binds to estrogen receptors and has estrogenic effects.

## Pelvic Organ Prolapse (POP)

- > One of the causes of POP is decreased estrogen secretion after menopause.
- > Estrogen replacement therapy is effective in treatment and prevention for POP.

However, there are no reports on the association between Equol and POP.

In this study, we investigated the association between the presence or absence of Equol production

and the occurrence of POP and its associated symptoms related to lower urinary tract symptoms in patients with POP.

# **Patients and Methods**

#### **Patients**

diagnosed with POP at our institution between April 2019 and December 2023

## **Methods**

- ➤ a retrospective study
- > used spot urine to measure Equol concentration using Equol ELISA Kit (Cosmo Bio Co., Ltd, Tokyo, Japan)
- > evaluated the patients' background, subjective symptoms, and objective findings



. . . . .

**Equol-producing group** 

Overactive bladder (OAB) was defined by
OAB Symptom Score (OABSS).
✓ Q3 (urgency score) of at least 2 points and

✓ Total score of at least 3 points

Estrogen

Equol

HC

Subjective symptoms ✓ OABSS

✓ UFM

POP





1. Yoshikata R, et al. PLoS One. 2024; 19: e02889

UFM: uroflowmetry, POP-Q: Pelvic Organ Prolapse-Quantification

# Results

| Variables                           | Equol-producing group | Equol non-production group | P value |
|-------------------------------------|-----------------------|----------------------------|---------|
| Number of patients (%)              | 32 (57.1)             | 24 (42.9)                  | 0.350   |
| Age at onset, y.o                   | $70.6 \pm 6.8$        | $66.1 \pm 5.0$             | 0.008   |
| Urinary Equol concentration, µmol/L | 4.80 ± 7.18           | $0.28 \pm 0.32$            | < 0.001 |
| Body mass index, kg/m <sup>2</sup>  | $23.2 \pm 3.5$        | 25.1 ±3.1                  | 0.037   |
| Parity                              | $2.5 \pm 0.8$         | $2.2 \pm 0.7$              | 0.226   |
| Gynecological surgery (%)           | 7 (21.9)              | 5 (20.8)                   | 1.000   |
| Hypertension (%)                    | 22 (68.8)             | 16 (66.7)                  | 1.000   |
| Diabetes mellitus (%)               | 10 (31.3)             | 11 (45.8)                  | 0.282   |
| Dyslipidemia (%)                    | 15 (46.9)             | 15 (62.5)                  | 0.288   |
| Subjective symptoms (OABSS)         |                       |                            |         |
| Q1. Daytime frequency               | $1.20 \pm 0.56$       | $0.87 \pm 0.52$            | 0.105   |
| Q2. Nocturia                        | $2.27 \pm 0.80$       | $1.27 \pm 1.03$            | 0.010   |
| Q3. Urgency                         | 2.73 ± 1.83           | 2.73 ± 1.75                | 1.000   |
| Q4. Urgency incontinence            | $2.00 \pm 1.93$       | $1.93 \pm 2.05$            | 1.000   |
| Total OABSS                         | $8.20 \pm 4.09$       | $6.80 \pm 4.80$            | 0.404   |
| Overactive bladder (%)              | 25 (78.1)             | 16 (66.7)                  | 0.685   |
| Objective findings                  |                       |                            |         |
| Voided volume, mL                   | 241.9 ± 32.8          | 279.4 ± 147.3              | 0.423   |
| Maximum flow rate, mL/sec           | 21.0 ± 11.1           | $22.2 \pm 14.9$            | 0.883   |
| Post-void residual volume, mL       | 52.1 ± 94.2           | 95.1 ± 118.8               | 0.201   |
| POP-Q, Stage                        | $2.8 \pm 0.6$         | $2.8 \pm 0.6$              | 0.965   |

## Analysis of age at onset in patients with POP

|                                  | univariate analysis   |         | multivariate analysis |         |
|----------------------------------|-----------------------|---------|-----------------------|---------|
|                                  | HR (95% CI)           | P value | HR (95% CI)           | P value |
| Equol-producing (presence)       | 0.434 (0.244 – 0.773) | 0.005   | 0.433 (0.233 – 0.802) | 0.008   |
| Body mass index                  | 1.047 (0.967 – 1.134) | 0.259   | 1.018 (0.933 – 1.112) | 0.689   |
| Parity                           | 1.099 (0.786 – 1.536) | 0.581   | 1.178 (0.822 – 1.688) | 0.374   |
| Gynecological surgery (presence) | 1.122 (0.590 – 2.137) | 0.725   | 1.156 (0.602 – 2.220) | 0.664   |
| Hypertension (presence)          | 0.815 (0.463 – 1.436) | 0.479   |                       |         |
| Diabetes mellitus (presence)     | 1.349 (0.756 – 2.394) | 0.307   |                       |         |
| Dyslipidemia (presence)          | 0.986 (0.578 – 1.683) | 0.958   |                       |         |



Equol

- Estrogenic effects
- Collagen synthesis<sup>2</sup>
- Vasodilatory effects<sup>3</sup>
- Antioxidant action<sup>4</sup>
- Anti-inflammatory effects<sup>5</sup>
- Improve lipid metabolism<sup>6</sup>
- Improve glucose metabolism<sup>7</sup>

Gopaul R, et al. Biofactors. 2012; 38: 44-52
 Jackman KA, et al. Brain Res. 2007; 1141: 99-107
 Rüfer CE, et al. J Agric Food Chem. 2006; 54: 2926-2931
 Lin IC, et al. J Nutr Biochem. 2016; 32: 101-106
 Ge YF, et al. J FOOD Biochem. 2020; 44: e13295
 Cheong SH, et al. Mol Nutr Food Res. 2014; 58: 267-277

COI : The authors declare no conflict of interest associated with this research.