

# #497 Midline Sacral Meningeal Cysts: Correlation with pelvic sensory and visceral symptoms and neurophysiology findings



C. Hentzen<sup>1,2</sup>, I. Cabrilo<sup>3</sup>, P. Malladi<sup>1,4</sup>, S. Simeoni<sup>1,4</sup>, G. Amarenco<sup>2</sup>, N. Zaidman<sup>3</sup>, M. Pakzad<sup>1</sup>, S. Shah<sup>5</sup>, A.T. Casey<sup>3</sup>, J.N. Panicker<sup>1,4</sup>

1 Department of Uro-Neurology, NHNN, Queen Square, London, UK; 2 Sorbonne Université, GRC 01, GREEN, Paris, France; 3 Victor Horsley Department of Neurosurgery, NHNN, Queen Square, London, UK; 4 UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, London, UK 5 Lysholm Department of Neuroradiology, NHNN, Queen Square, London, UK

### Introduction

- Midline sacral meningeal cysts (MSMC)  $\rightarrow$  diverticula deriving from the dural lining of the sacral thecal sac (Fig 1) <sup>1,2</sup>
  - Communication with the subarachnoid space of the lumbar cistern = ostium
  - Filled with cerebrospinal fluid
- Frequent confusion with perineurial cysts (Tarlov cysts)
- Rare <1%</li>
- Widely considered to be benign lesions without clinical significance
- Symptomatic MSMC described, related to the sacral nerve root compression → radicular pain and genito-urinary symptoms
- Previous description of nerve injury in Tarlov cysts<sup>3</sup>

#### **Aims**


- Describe the clinical presentation of patients with presumedly symptomatic MSMC
- Assess the impact of the cyst on **nerve root function**
- Compare the rate of nerve injury between MSMC and Tarlov cysts

#### **Methods and Materials**

 Inclusion of all consecutive patients with symptomatic MSMC (i.e. with at least one pelvic symptom) referred for a uro-neurology assessment between January 2017 and July 2021










Pelvic neurophysiology Fig 2



Urodynamic



MRI scan

 Comparison with previous published cohort of patients with Tarlov cysts who undergone a similar assessment<sup>3</sup>



(A) Sagittal T2-weighted lumbosacral MRI slice showing an MSMC from lower S1 to the S4/S5 junction.

(B) Sagittal lumbosacral CT slice (bone window) demonstrating MSMC-induced sacral scalloping (white arrows).

(C) Oblique coronal T2-weighted sacral MRI slice running through the MSMC's ostium (black arrow), seen to present with complex septations. The inset in the right upper corner indicates the level of the MRI slice.

(D) Axial T2-weighted sacral MRI slice through lower S3 level. The black arrows indicate the S4 nerve roots pushed ventrally by the dorsally growing cyst.

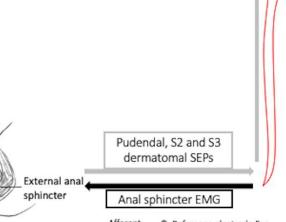



Fig 2. Schematic diagram depicting the pelvic neurophysiology studies performed

## Results

- **11 patients**; 42.2±12.5 years
- Median compression of 6 nerve roots
- 9 patients with abnormal neurophysiology findings (Table 1)
- No link between abnormal neurophysiology and the size of the cyst
- Comparison with Tarlov cysts
  - Abnormal neurophysiology tests not significantly different between TC and MSMC (57% versus 82%, respectively, p=0.19)
  - The number of abnormal tests was greater in MSMC (p=0.046)
  - Proportion of patients with at least two abnormal tests higher in patients with MSMC (55% versus 18%, p=0.018)

|         |     |                        | Symptoms         |                 |                 |                |                    | N        | europhysiology findi   | rophysiology findings    |                       | MR Imaging findings |          | Uroflowmetry |  |
|---------|-----|------------------------|------------------|-----------------|-----------------|----------------|--------------------|----------|------------------------|--------------------------|-----------------------|---------------------|----------|--------------|--|
| Patient | Age | Pain                   | Numbness         | LUTS<br>Storage | LUTS<br>Voiding | Bowel symptoms | Sexual dysfunction | EAS EMG  | Dermatomal SEPs<br>(n) | Pudendal<br>SEPs         | Extension of the cyst | Size of the cyst    | Curve    | PVR          |  |
| 1       | 54  | Back<br>Legs           | Legs<br>Perineum | Yes             | No              | No             | NA                 | Normal   | Abnormal<br>(3)        | Abnormal<br>(bilateral)  | S1 to S5              | 96x47x25            | Normal   | Normal       |  |
| 2       | 49  | Back<br>Legs           | -                | Yes             | No              | Yes            | Yes                | Normal   | Abnormal (1)           | Abnormal (unilateral)    | S1 to S3              | 40x35x24            | Normal   | Normal       |  |
| 3       | 59  | Legs<br>Pelvis         | -                | Yes             | Yes             | No             | Yes                | Normal   | Normal                 | Abnormal (unilateral)    | S1 to S4              | 80x39x22            | Abnormal | High         |  |
| 4*      | 25  | Back<br>Legs<br>Pelvis | -                | No              | Yes             | NA             | No                 | Normal   | Normal                 | Normal                   | S2 to S4              | 60x43x20            | NA       | Normal       |  |
| 5       | 58  | Back<br>Legs<br>Pelvis | -                | Yes             | Yes             | No             | Yes                | Not done | Abnormal (1)           | Normal                   | S2                    | 14x12x20            | Abnormal | Normal       |  |
| 6       | 35  | Back<br>Legs           | -                | Yes             | No              | No             | NA                 | Normal   | Abnormal (3)           | Abnormal (unilateral)    | S2                    | 19x11x19            | Abnormal | High         |  |
| 7*      | 34  | Back<br>Legs           | -                | Yes             | Yes             | Yes            | NA                 | Normal   | Normal                 | Abnormal (unilateral)    | S2 to S4              | 57x30x13            | Normal   | Normal       |  |
| 8       | 47  | Back<br>Pelvis         | Leg              | Yes             | Yes             | No             | No                 | Abnormal | Abnormal (1)           | Normal                   | S1 to S3              | 51x28x14            | Normal   | Normal       |  |
| 9       | 43  | Back<br>Legs           | Leg              | Yes             | Yes             | Yes            | Yes                | Normal   | Abnormal (1)           | Abnormal (unilateral)    | S1 to S4              | 83x51x36            | Normal   | High         |  |
| 10      | 39  | Back<br>Legs<br>Pelvis | -                | Yes             | Yes             | Yes            | Yes                | Not done | Normal                 | Normal                   | S2 to S4              | 57x39x21            | Normal   | Normal       |  |
| 11      | 22  | Back<br>Legs           | Buttock          | Yes             | Yes             | Yes            | Yes                | Normal   | Abnormal (1)           | Abnormal<br>(unilateral) | S1 to S2              | 28x20x14            | Abnormal | Normal       |  |

Table 1: Clinical presentation and neurophysiology, MR imaging and uroflowmetry findings in 11 patients with midline sacral meningeal cysts EAS: external anal sphincter; EMG: Electromyography; LUTS: Lower Urinary Tract Symptoms PVR: Post Void Residual; SEPs: Sensory Evoked Potentials

Normal findings

1 abnormal test

2 abnormal tests

## **Discussion**

• Nerve injury: sensory > motor pathways → related to the fiber size?

\* Other urological syndrome associated (Fowler's syndrome)

- Five patients with abnormal uroflowmetry: impact of nerve injury on bladder contraction? Medication (opiates)?
- Overactive bladder: probably not related to the cyst
- No obvious link between the size of the cyst and nerve injury → Role of intracystic pressure in creating nerve injury?

## Conclusions

- First study to report an objective neurological impairment of sacral nerve root function in patients with symptomatic MSMC
- Increased prevalence and severity of nerve injury in MSMC than in Tarlov cysts  $\rightarrow$  related to their expansiveness and involvement of multiple sacral roots
- Role of pelvic neurophysiology in selecting patients for surgery?

### Contact

Claire Hentzen
Neuro-urology department
Tenon Hospital, Paris, France
Email: claire.hentzen@aphp.fr

## References

- 1. Tarlov IM. Spinal perineurial and meningeal cysts. J Neurol Neurosurg Psychiatry. Dec 1970;33(6):833-43.
- 2. Cabrilo I, Zaidman N, Casey AT. Midline sacral meningeal cyst decompression and repair. *Acta Neurochir (Wien)*. Oct 2021;163(10):2777-2781.
- 3. Hentzen C, Cabrilo I, Malladi P, et al. Sacral Tarlov cysts: Neurophysiology abnormalities and correlation with pelvic sensory and visceral symptoms. Eur J Neurol. Sep 2023;30(9):2838-2848.