Main idea was based on the concept that, in terms of hydrodynamics, voiding occurs when a resultant force produces the impulse required to change the momentum of a given volume of urine, triggering transition from the stationary to the flowing state. Central pillars of our theoretical model were, the impulse-momentum principle deriving from Newton's second law of motion which, when applied to liquids states that, the sum of forces acting on a flowing fluid volume relate to its acceleration by: Faverage= V x aaverage and, the temporal profile of uroflow curve, that is bell shaped comprised of an ascending and a descending limb depicting the time sequence of events over the course of micturition, marked by steeply increasing/accelerating flow to a maximum value (Qmax) that then, gradually reduces/decelerates until termination. The resultant, that is net or total force applied to a given volume of urine during voiding, is composed of individual forces acting in opposite directions as: 1) Expulsive Forces (promote voiding/accelerate urine flow) and 2) Resistive Forces (impede voiding/decelerate flow). We regarded Detrusor pressure as the main impulsive force reflecting the pump function of the bladder and assumed that forces resisting outflow can be represented and quantified by Urethral resistance factor, that is considered the most reasonable estimate of urethral resistance, is applicable to both genders and can be calculated by the equation: URA=[(1+4dQ2Pdet)1/2-1]/2dQ2 deriving Pdet=(2dQ2URA +1)2 -1/4dQ2 (d=3.8x10-4) .Thus, total Faverage : = Fexpulsive – Fresistive= average Detrusor Pressure (Pdet) – average Urethral Resistance (R).
The equation was developed in three consecutive steps. In 1&2, average acceleration was calculated by individually measuring flow acceleration and deceleration deriving Eq-1 (aave = Qmax(tft-2tpf)/2tft) and by applying the impulse-momentum and Pdet formulas to extract Eq-2 (aave= dQave2 Rave2/V ) [Qmax=maximum flow rate, Qin=initial flow (onset of voiding)[≈0], t0=time of initiation of urination[≈0], tpf = time to peak flow, Qfin=final flow[termination of voiding ≈0], tft=flow time, d=3.8x10-4, Qave= average flow rate, Rave = average urethral resistance, V= voided volume]. In step3, combining Eqs 1&2 and solving for Rave, the QRFindex equation which expresses the mean resistance to urine was formulated . Subsequently, we applied QRF to a cohort of 84 patients (61 males-23 females) complaining of voiding dysfunction symptoms, who underwent uroflow test followed by pressure-flow study and were classified according to Schafer LinPURR nomogram as unobstructed (LinPURR: 0-1) or obstructed (LinPURR: 2-6). Although LinPURR grading is basically applicable to men, we decided to employ it in females, since there is no consensus on how to properly determine bladder outflow obstruction in women. Statistical analysis was performed by using the SPSS-22® and MedCalc® statistical packages (p<0,05).